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Equation of motion of a diffusing vortex sheet 

By M. R. DHANAK 
Department of Ocean Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA 

(Received 4 January 1993 and in revised form 1 December 1993) 

Moore’s (1978) equation for following the evolution of a thin layer of uniform vorticity 
in two dimensions is extended to the case of a non-uniform, instantaneously known, 
vorticity distribution, using the method of matched asymptotic expansions. In general, 
the vorticity distribution satisfies a boundary-layer equation. This has a similarity 
solution in the case of a vortex layer of small thickness in a viscous fluid. Using this 
solution, an equation of motion of a diffusing vortex sheet is obtained. The equation 
retains the simplicity of Birkhoff’s integro-differential equation for a vortex sheet, 
while incorporating the effect of viscous diffusion approximately. The equation is used 
to study the growth of long waves on a Rayleigh layer. 

1. Introduction 
Many incompressible fluid flows at high Reynolds number are characterized by thin 

vortex layers, surrounded by irrotational flow. It is usual in such flows to neglect 
viscosity and replace the vortex layer by a vortex sheet. If the instantaneous position 
of the vortex sheet can be determined, then the flow can be calculated using the 
Biot-Savart line integral. 

A convenient formulation of the motion of a vortex sheet in an inviscid fluid in two 
dimensions has been given by Birkhoff (1962). If r denotes the net vorticity between 
one end of the sheet and a point, with complex coordinate z = x + i ~ ,  on the sheet, then 
the equation of motion can be written in parametric form as z = %(T, t )  where 3 
satisfies 

where denotes Cauchy principal value integral, an asterisk denotes complex 
conjugate and T, is the total circulation in the sheet. Equation (1.1) reduces the 
problem of calculating the position of the vortex sheet to a marching problem in time 
and would therefore seem suitable for numerical integration. However, chaotic 
behaviour invariably results, the solutions being sensitive to time-step and dis- 
cretization procedures used, and successful integration requires use of smoothing 
techniques. Moore (198 1) demonstrated that the chaotic behaviour is a manifestation 
of a discrete form of the Helmholtz instability of the vortex sheet, whereby the shortest- 
wave disturbances grow the fastest. Further, a vortex sheet can develop singularities in 
finite time, suggesting that (1.1) is ill-posed (SaEman 1992, p. 145). 

In real flows the short-wave disturbances are suppressed by viscosity which acts to 
thicken the vortex sheet; for an inviscid model of such a layer, it was shown by 
Rayleigh (1894) that waves of wavelength less than approximately five times the layer 
thickness are not amplified. In view of this, Moore (1978) extended the Birkhoff 
equation to that for a thin vortex layer of uniform vorticity. The equation is valid so 



266 M .  R. Dhanak 

long as the radius of curvature of the layer is uniformly large compared with its 
thickness. It is therefore suitable for considering the evolution of long waves on the 
layer. However, the fate of short waves. which are quite outside the range of validity of 
the equation but which are likely to arise in any numerical calculation, need to be 
considered in order to determine whether chaotic motion would ensue in a numerical 
integration of the equation. Unfortunately, analysis revealed that while the growth of 
short waves with length in a certain range would be suppressed by allowing for the 
thickness of the layer, very short waves would still be spuriously amplified, requiring, 
once again, the use of smoothing techniques for successful numerical integration of the 
problem. It is possible that the problem may be overcome by either allowing for a non- 
uniform distribution of vorticity in the vortex layer or by considering a higher-order 
correction to Birkhoff s equation. 

In this paper we consider the first of these possibilities, namely allowing for a non- 
uniform distribution of vorticity in the layer. The vorticity is required to decay at least 
exponentially away from the ‘centroid line’ C (defined in $2) of the vorticity 
distribution. The free vortex layer is regarded as a ‘double-sided’ boundary layer on 
an evolving space curve C whose equation of motion is sought. 

There are two disparate lengthscales, namely the thickness of the layer and its local 
radius of curvature, in the problem, and the method of matched asymptotic expansions 
is used, as in Moore (1978), to determine the equation of motion of C when the ratio 
of these two scales is uniformly small, of O(e), where 6 < 1. Thus an ‘outer’ problem 
based on flow at a large distance from C due to a vortex sheet at C is posed and the 
solution to this is matched to an ‘inner’ solution for the flow in the vicinity of C. An 
equation in terms of an expansion in E is developed. 

In $2, the intrinsic coordinate system used is described and the equations of motion 
are established. In Q 3 ,  assuming that the vorticity distribution is is instantaneously 
known, an equation of motion of the curve C is obtained in terms of is; the details of 
the matching process are given in Dhanak (1980) and are not reproduced here. The 
equation retains the simplicity of the vortex sheet model, while incorporating finite- 
thickness effects approximately. It reduces to the equation given by Moore if is is taken 
to be uniform. An interpretation of the equation in terms of forces on the layer is also 
given in $ 3 .  The modified equation involves the momentum thickness 6, an equation 
for which is given in $ 3 ,  though this cannot be given in closed form. A modification to 
Kirchoffs invariant for a vortex sheet is also given in $3; it allows for viscous 
dissipation. 

The equation for the non-uniform vorticity layer is used in the Appendix to consider 
the growth of long waves on a straight layer of steady, non-uniform vorticity in an 
inviscid fluid and the results are compared with corresponding results of Drazin & 
Howard (1962) for a mixing layer with a general velocity distribution. The comparison 
provides a useful check for the equation. In general, the determination of 6j requires a 
solution to the boundary-layer-type equation. However, for the case of an 
instantaneously created arbitrary vortex sheet undergoing viscous diffusion, the 
vorticity distribution, valid for small times, can be determined. Thus, in $4, an equation 
of motion of a diffusing vortex sheet is obtained. The asymptotic equation is valid 
provided the thickness of the layer of vorticity is small compared to the local radius of 
curvature. In particular, the asymptotic scheme breaks down in the vicinity of points 
where the sheet develops curvature singularities; at such points a transition in 
behaviour from shearing to rotation in a small core is expected (Tryggvasan, Dahm & 
Skeih 1991). The equation is used in 9 5  to study the growth of long waves on a 
Rayleigh layer. 
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2. Preliminaries 
In this section the equations of motion for the flow in the immediate vicinity of the 

vortex layer are established. The intrinsic coordinate system to be used here was 
introduced in Moore (1978) and is briefly described below. 

Let s be the arc distance measured along a plane curve C (figure 1); C will be 
identified with the centroid line of the vorticity distribution. Let P' be a point close 
enough to C for there to be a unique normal from P' to C. Let the normal meet C at 
P. Then, in a frame O X Y ,  fixed relative to flow at infinity, the position of P' at time 
t is given by 

r(P') = R(s, t) + nA(s, t),  (2.1) 

where R(s, t )  refers to the point P, n is the distance PP' and A(s, t)  is the unit normal 
at P ;  A(s, t) points to the left as C is traversed in the increasing s-direction (n  is positive 
in the positive fi(s, t)-direction). 

Differentiation of (2.1) and use of Serret-Frenet formulae for a plane curve leads to 

- 

dr = ŝ  1 - - ds + A(s, t )  dn, (2.2) ( 3 
where p(s, t) is the radius of curvature of C at P and 

is the unit tangent vector at P. Hence the coordinate system is orthogonal with line 
elements h, ds and dn where 

h, = h = 1 -n/p.  (2.4) 
- 

If tz(P') is the fluid velocity in the O X Y  frame of reference at P' at time t ,  then we 
define relative velocity (u, 0) in the (s, n) system by 

and since 

i3R an qp') = -+n-++us"+vli, 
at  a t  

afi  
- at (s, t )  = - O(s, t )  s", 

where a(s, t )  is the angular velocity of the coordinate frame (s", A) at a point with fixed 
s, (2.5) can be written 

The continuity equation (see Moore 1978) is given by 

au a 8 0  
-+-(hu) = n- 
as an as 

___ 
while the vorticity ~ ( s ,  n, t) in the fixed coordinate frame O X Y  is given by 
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P(S.  0 

Q 
FIGURE 1. An element of a vortex layer with centroid P(s) and radius of curvature p(s). 

It can be shown that ~ ( s ,  n, t )  satisfies the equation 

where ~ v is the fluid viscosity. We now define the plane curve r = R(s, t )  in the fixed 
frame OXY. If we write 

O(s, n, t )  = G(R(s, t )  + &(s, t) ,  t) ,  (2.1 1) 

then R(s, t)  is chosen so that uniformly in s and t ,  G decays exponentially as n --f ( +)m, 
and uniformly in s 

Ondn = 0. (2.12) s 
Here the limits of the integral are chosen to be where o is vanishingly small; Baker & 
Shelley (1990) have considered an alternative mid-line definition for a layer of uniform 
vorticity. The choice (2.12) of C ensures that most of the vorticity lies in a thin layer 
containing C. The advantage of this choice becomes apparent when the circulation of 
the layer is considered, because the circulation round a curve enclosing the layer 
between a normal through a point on C characterized by arc distance s and one 
through s = 0, at time t, is given by 

T(s, t )  = Ji 1." dn ds. (2.13) 
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That is, on substituting for h from (2.4) and using (2.12), 

T(s, t )  = 1; 1isdnd.Y. 

Hence, the circulation density is 

(2.14) 

(2.15) 

independent of the local curvature of the layer. On multiplying the vorticity equation 
(2.10) by h and integrating across the width of the layer it can be shown that y(s, t )  
satisfies 

(2.16) 

where q ( s ,  t)  is the speed of convection of vorticity in the direction of tangent to the 
curve C at s and is given by 

U, /a dn = l i j u  dn. (2.17) 

A further consequence of the definition (2.12) of the curve C is that on differentiating 
(2.12) with respect to time and using (2.10) we have the exact invariant relation 

which for a straight layer reduces to 

2 as (/Gun dn) - ~ G U  dn = 0. 

(2.18) 

(2.19) 

3. Governing equations 

fast as 

so that the scale of p+(s, t )  gives a measure of the thickness of the vortex layer. To 
ensure that the layer is thin, we must have, uniformly in s, 

We assume that the instantaneous vorticity distribution ij(s,n, t )  decays at least as 

exP(-lnlp,l) as n + * a ,  (3.1) 

IP& t ) lP(J,  t>l 5 E ,  (3.2) 

where p is the radius of curvature of C at position s and c 1. If we regard the jump 
in velocity, y(s, t), across the layer as an O(1) quantity, then (3.2) implies that i j  = 

O(e-’) uniformly over the length of the sheet (except possibly at the ends of the sheet). 
In view of the two lengthscales p and p, a procedure for a matched asymptotic 
expansion can be developed in a manner described in Moore (1978) in order to 
determine the equation for the motion of the centroid curve C in terms of the vorticity 
distribution. Details of the inner and outer solutions and the matching proccss are 
lengthy but straightforward and are given in Dhanak (1980). For brevity these will not 
be reproduced here and only the final results will be given. Basically, in the inner 
problem, assuming 6~ to be instantaneously given, we introduce an inner variable 
y = e-ln and expand u and v in (2.7) as 

u = u,+eu,+ ...; U = cvl+€2U2+ ... (3.3) 
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to obtain, upon substitution in (2.8) and (2.9) and equating coefficients of powers of 
E to zero, a set of equations for uo,vl and so on; note that u is O(E). Hence, 

with ii,,(s, t )  and cl(s, t )  to be determined from matching with the outer solution and d 
defined as in (3.9). 

It may be noted that the circulation density equation (2.16) to leading order in c is 
given by 

In the outer problem, the flow is characterized by the mean properties of the layer 
and is insensitive to the actual details of the vorticity distribution. To O(e2), the outer 
solution is obtained by replacing the layer by an equivalent vortex sheet at C. This is 
a familiar result in boundary-layer theory where the effect of the boundary layer is 
taken into account by considering the surface to be at a distance equivalent to the 
displacement thickness 6, above the true surface; the error introduced is of O((CY,/Z)~) 
where Z is a typical length. 

Let Z(s, t )  be the complex parametric equation of the centroid line C, where 

~ ( s ,  t )  = R(s, t ) - i+iR(s ,  t)-$, (3.6) 

with R(s, t )  as in (2.1) so that a point z = x+iy in the vicinity of the curve may be 
written 

z = Z(s, t )  + in ei", (3.7) 

where a($, t )  is the inclination of the tangent i(s, t )  to the OX-direction. For each z there 
is a unique a provided that jnl 3 p(s. t). Then, by matching the inner solution with the 
outer solution, it can be shown that 

where an asterisk denotes complex conjugate, ao(t) denotes the arc distance between the 
two ends of C and 

6, = y2  (" d(7-A) dn; d(s, n, t )  = 1'" a(s, n', t )  dn'. (3.9) 
J --cc J --o; 

Here, - d(s, n, t )  is, to O(E'), the jump in the tangential velocity at station s between 
position n and n = - co so that d(s, a, t )  = y(s, t),  the circulation density; the O(c) 
correction is zero at an end where y = 0. 8, can be identified with the momentum 
thickness of the layer if we define the momentum thickness as 

where U, and U, are respectively the 'free-stream' tangential velocities at YE = f co 
respectively and u is the local component of velocity tangential to C. 
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We now introduce Birkhoff s circulation coordinate r. Suppose s(T, t )  is the arc 
distance along C to a normal section which has constant net vorticity r between it and 
the end s = 0 for t 2 0. Then 

(3.10) 

so that 

On using the circulation density equation (3.5) and noting that y(s, t )  + 0 for s =I= 0, 
a(t), we have 

(3.1 1) 

so that if r, n, t are regarded as the new independent variables and we write 

%T, t )  = Z(s, t ) ;  U ( r ,  t )  = y(s, t ) ;  &’, n, t )  = d(s, n, t )  and &(r, t) = S,(S, t ) ;  
(3.12) 

then 

Further, we note that 

so that 

(3.13) 

(3.14) 

Thus it can be shown that (3.7) can be written 

(3.15) 
Then from (3.13) it can be shown that 

(3.16) 

where Re denotes real part and 

If F = 0 and all the vorticity were concentrated in a sheet at C, all terms except 
the first one on the right-hand side of (3.15) vanish and we recover Birkhoff s equation 
for the motion of a vortex sheet. Further, if the vorticity w = w0, a constant for 
--H(T, t )  < n < H(T,  t )  and G = 0 otherwise with Y =  0, then 

d“ = wo(n + H )  and H = U/(2wn) (3.17) 

and on substituting this into (3.15) and (3.16), we recover Moore’s (1978) equation 
for the motion of a thin layer of uniform vorticity. It may be noted, however that if 
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v +  0 and the layer is approximated by a vortex sheet of zero thickness at C, then 
a modified Birkhoff's equation results : 

(3.18) 

In (3.15) we have retained the third term on the right-hand side on the assumption 
that e2 V//V = o(l), where V and 1 are velocity and length scales associated with the 
motion of the curve C. If, however, 2 Vl/v = O( I), then the third term is of the same 
order as the error term and, for consistency, cannot be retained. Thus, in this case, 
(3.1 5 )  becomes 

Further, using the vorticity equation to leading order in e, it can be shown (Dhanak 
1980) that in this case & satisfies the following energy equation: 

* 2i7 
(3.20) 

(3.21) 

& corresponds to the energy thickness of the boundary-layer theory; a similar equation 
may be obtained for the case 2 Vl/v = o( 1). Thus, in geperal, the equations of motion 
are not in closed form and in order to determine S, the instantaneous vorticity 
distribution, governed by the leading-order approximation to (2. lo), needs to be 
established. In Q 4, we consider the case for which the non-uniform vorticity distribution 
can be obtained approximately in the two cases c2 Vl/v = o(1) and 2 Vl/v  = 0(1), while 
in the Appendix, we use (3.15) to consider the stability of a straight steady inviscid 
(F = 0) mixing layer with a general velocity distribution and show that the growth rates 
of disturbances to the layer, obtained using (3.14), are in agreement with Drazin & 
Howard (1962). 

A useful invariant used in numerical calculations involving vortex sheets to check for 
numerical accuracy is Kirchoff s invariant function for a vortex sheet, given by 

(3.22) 

where po is the fluid density. Using (3.19) and (3.20), it can be shown that a modification 
to this invariant for a thin layer of non-uniform vorticity in the case e2 V ~ / V  = O( 1) is 
given by 

(3.23) 

where p = vp,; a similar result may be obtained in the case e2 Vl/v = o(1). Hence an 
invariance to O ( 2 )  is obtained if v = 0. 

Interpretation of the mod$cd BirkhoH equation (3.15) 
A simple interpretation of the modified Birkhoff equation (3.15) may be given as 
follows; a similar interpretation for Moore's (1978) equation is given in Saffman (1992, 
pp. 16C163). 
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Consider, at a fixed instant, an element of length ds of the layer with local radius of 
curvature p(s, t )  and the local centre of curvature at Q(s, t ) ;  s being identified with the 
arc distance measured along the line joining the centroid of each element. Let P(s, t )  be 
the instantaneous centroid of the vorticity distribution rr)(s, n, t )  in the element, II being 
distance measured from P along @. The surfaces A ,  C, and B, D, (see figure 1) are 
chosen so that the vorticity there is effectively zero; this is always possible in view of 
the exponential decay of vorticity (cf. (3.1)) as @ is traversed away from P. Let the 
instantaneous distance from P to A ,  C,, and from P to B I D ,  measured along @ be 
SF(s, t)  respectively. 

The jump in the tangential velocity across the element is given by the circulation 
density -y(s,t).  Then, for flow at great distances from P, the element can be 
represented by a point vortex of strength y ds at P. If in a coordinate frame fixed with 
respect to flow at infinity the position of P is given by Y = R(s, t ) ,  then in the absence 
of any distribution of vorticity (i.e. if we have a vortex sheet at C), 

(3.24) 

where V, is the velocity induced by the other elements of the layer and includes the 
velocity with which P is convected along the sheet. Equation (3.24) is essentially 
equivalent to Birkhoff s equation (1.1). 

When the vorticity is distributed in a layer, the velocity contribution from all the 
other elements of the layer to the element at s may be regarded as due to an 
approximate vortex sheet lying along C but excluding the section coinciding with the 
element at s. Then the distribution of vorticity in the element at s will give rise to an 
extra velocity at P(s), given by 

(3.25) 

The existence of this extra velocity at the vortical element P produces an extra force 
on the element given by the Kutta lift and the difference between the local pressure 
gradient and viscous forces associated with the element and those associated with a 
corresponding element enclosing an equivalent vortex sheet of zero thickness along C 
as 

(3.26) 

where k is a unit vector normal to the plane of flow and (u,v) is fluid velocity in the 
neighbourhood of P relative to (4, V,) with u given by (3.4) (u = ~T"(S, t)  at n = L, and 
u = - y(s, t )  + iTo(s, t )  at n = 8,) ; the second term on the left is the contribution from the 
vortex layer while the third term is the contribution from a corresponding element 
enclosing an equivalent sheet of zero thickness. Here, we have assumed that the fluid 
has unit density and the pressure p remains sensibly constant across the layer. In fact, 
to leading order, p(s, d,, t )  has the same value for the layer as for the corresponding 
sheet so that the pressure terms in (3.26) cancel. Further, using (3.4), it can be shown 
that the viscous terms in (3.26) also cancel. Then, (F,C) is given by the difference 
between the rate of change of momentum in the layer element and in the corresponding 
element associated with the vortex sheet flow. (F, C) is determined below. Meanwhile, 
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it may be noted that the leading-order constancy of the pressure across the layer 
implies that 

so that 

a Y  a a2Y -+-(y(-$y+uo)) = F- 
at  as as2 

(3.28) 

which is the circulation density equation (3.5) with U, = -iy+iio. 
The difference between the rate of change of momentum in the tangential direction 

in the layer element and in the corresponding element associated with the vortex sheet 
flow is to leading order given by 

Using (3.4) and integrating by parts it can be shown that 

3 r m  

. .  

Hence, from (3.26) 

(3.29) 

(3.30) 

(3.31) 

The difference between the rate of change of momentum in the normal direction in the 
layer element and in the corresponding element associated with the vortex sheet flow 
is, to leading order, given by 

(3.32) 

representing the net change in centrifugal acceleration. Using (3.4) and integrating by 
parts it can be shown that 

Hence, from (3.26) 

U 1 =Lr d(y-d)dn. 
YP -m 

(3.33) 

(3.34) 

Both (3.31) and (3.34) are in agreement with the corresponding terms in (3.8). 

4. Diffusing viscous vortex sheet 
In general, (2.10) needs to be solved to determine the instantaneous vorticity 

distribution and hence evaluate 6,. In the case of an instantaneously created arbitrary 
vortex sheet in flow at high Reynolds number, it is evident that two timescales are 
involved: the e-folding time associated with the evolution of the curve C and a slower, 
viscous diffusion timescale. Since the layer thickness parameter e is necessarily a 
function of the Reynolds number, it is appropriate to consider non-dimensionalized 
equations. For a typical lengthscale I, a velocity scale Y and an e-folding timescale 
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P/V ,  we introduce a viscous (non-dimensional) time T = c 2 t .  Then in terms of the 
inner variables x = s and y = e-ln, with the vorticity W(S, n, t )  = w(x,  y, t ,  T ) ,  the 
vorticity equation (2.10) can be expressed in non-dimensional form as 

-+---+- c?w I aw 1 (qwu)  - + - a ( h ~ )  - WJ) gj = - 1 (- 2 (--) 12w' + 12 (h $1 j , (4.1) 
c?t szaT h ax c?y ax AR c?x hax Ezay 

where R = Vl/v and h = (1 - ty /p) .  We further expand w(x ,  y ,  t ,  T )  as 

0 = €-lw-l + wo + . . . , (4.2) 

with 1 w-, dy = y(x, t ) ,  1 w, dy = 0 ( m  > - 1). For determining O(E) terms in (3.1 5), 
only an O(e-') approximation to w is required. We consider two possibilities: 

(i) e = o ( ~ - f )  

w ,  we obtain 
In this case, on equating O ( c 3 )  terms to zero in (4. l), after substituting for u, v and 

which has the required solution 

so that, in view of (4.2), the thickness 6,(s, t )  in (3.9), non-dimensionalized with respect 
lo I ,  is given by 

Hence, (3.15) in non-dimensionalized form becomes, on re-introducing t in (4.5), 

t = ~ ( l ) ,  (4.6) 
assuming that U(2U/2T)(a% */W) is O( 1). 

(ii) f;' = R-; 

created sheet, we have from (4.1 j that w is independent of T and wP1 satisfies 
For this case, which essentially corresponds to t = 0(1) for an instantaneously 

Since uo and zil depend on O J - ~ ,  this is a nonlinear equation and would, in general, 
require a numerical treatment. Here, we develop a series approximation as is done in 
boundary-layer theory (Goldstein 1938, pp. 183-184). Thus we write 

wpl = y(x, t )  L1, 
so that it follows from (4.7) that 
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The first approximation is obtained by setting the right-hand side of (4.9) to zero and 
using sFm dy = 1 ; this is given by (4.4) with T = Rt. The second approximation is 
then obtained by substituting for on the right-hand side of (4.9) and solving the 
resulting non-homogenous equation and applying the appropriate boundary con- 
ditions. Hence, 

Thus in this case, in view of (4.2), the thickness S2(s, t )  in (3.9), non-dimensionalized 
with respect to I ,  upon introduction of U and variable r in (4. lo), is given by 

(S)( t au ) (X) Sz(r, t )  = - 1 +--+O(t2) +o - 2u at 
(4.1 1) 

Then the non-dimensional form of (3.19) is given by 

t = O( l), (4.12) 

where 3 is as in (3.16). It may be noted that the 0(1/R)  retained in (4.6) is now of the 
same order as the error term and is therefore, for consistency, amalgamated in the 
latter . 

Equations (4.6) and (4.12) are the main results of this section. 

5. Growth of long waves on a Rayleigh layer 
Suppose that, instantaneously at t = 0, an infinitely long straight vortex sheet of unit 

strength is created in a fluid so that if undisturbed its configuration would be given by 
the non-dimensional equation Z(T, t)  = r. Suppose now that at t = 0 the sheet is so 
disturbed as to assume an instantaneous shape 

B = r+flr,t), (5.1) 
where l i3f /W -g 1. Then, as in $4, we consider two cases : 

(i) E = 

If (5.1) is substituted into (4.6) and only terms linear infare retained, then after a 
little algebra, we obtain 

where 

y = 4+i(') 2t (--+-- 3 ay lay*) +- 1 (ay -+- ay*) 
at 2 a r 2  2 a p  2~ a r 2  a r 2  ' 

(5.3) 

Here, AT', t )  is chosen so that it represents a sinusoidal disturbance of spatial 
wavenumber k (non-dimensionalized), i.e. 

f(r, t )  = a( t )  eikr + b( t )  ePikr, (5.4) 
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where a(t) and b(t) are complex-valued functions which need to be determined. On 
substituting (5.4) into (5.2) and evaluating 4 by contour integration, terms 
proportional to eTikr can be equated to give 

d t  2 R 

- = 
db* 

(5.5a) 

(5.5b) 

The form of (5.5) suggests that a possible choice of solution is 

a(r) = h( t )  = a( t )  + ip( t), (5.6) 

say. This choice is not unique (e.g. a = -b is also a solution) but it will suffice for our 
purpose. 

Putting (5.6) into (5.5) and equating real and imaginary parts gives 

( 5 . 7 4  

(5.7b) 

where the dot denotes differentiation with respect to time. If we consider quasi-steady 
solutions to (5.7) in which 6, = (2t/nR): is considered to be sensibly constant, then 
these are of the form eVt where the growth rate LT is given by 

k2 
R 

= - +k( 1 - 4k(2t/nR)k) a, 

& = -Ik , ( 1  -2k(2t/nR);)P--aa, 

k2 
R 

c P + - ~ - ~ k k 2 ( 1  -2k8,)(1-4kJ2) = 0. 

For a finite Reynolds number but negligible thickness, the amplifying solution has a 
growth rate 

which is a modification of the corresponding inviscid flow result associated with 
Helmholtz instability. It may be noted that as k + m ,  v++R, unlike in the case 
of Helmholtz instability where L T + ~  in the limit. For a finite value of 6, + 0 with 
k8, 4 I ,  R % 1, the amplifying solution is given by 

LT = +k( 1 - 3k6, + O(k2Si)). (5.10) 

This may be compared with the corresponding limit of Rayleigh’s (1894) result for the 
growth rate of disturbances on an equivalent layer of constant vorticity of thickness h ;  
the two results are identical if we choose h = id2. 
(ii) = ~ - t  

In this case the disturbance equations corresponding to (5.7) become, using (4.12), 

= -(I  - 4 ( t , / ~ $ ) ~ , ,  (5.11~) 

/% = - (1 - 8(t,/R,)9 a, -2t,(t,/R,)~p,, (5.1 1 b) 

where t = ( 2 / k )  t,, a(t) = a(0) a,(t,), p(t) = a(0)/31(tl), R, = n R / k  and the dot denotes 
differentiation with respect to t,. The equations were integrated numerically for a range 
of values of the Reynolds number with initial conditions a,(O) = 1 and pl(0) = 0. 
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FIGURE 2. Growth of waves on a Rayleigh layer. Amplification rate plotted against (tl/Rl)k 

The integrations were carried out up to t ,  = 0.15R1. The solutions are displayed in 
figures 2 and 3. Figure 2 shows a plot of the amplification rate &,/a, plotted against 
(t,/R,)i = $Q, for Rr = 100, 500, 1000 and 2000. The amplification rate reaches a 
maximum at (tl/Rl)z = (tl/Rl)Laz and is suppressed at (t,/R,)i = (tl/Rl)$, both of 
which times are strictly quite outside the range of validity of the governing equations. 
However, it is interesting to note the dependence of (tl/Rl)Lax on R,, displayed in 
figure 3 (bottom curve): ( t l / R l ) ~ a z  decreases with increase in R, and at R, = 2000 has 
a value 0.03 1. This implies that in a high-Reynolds-number flow, waves of wavelength 
h on a Rayleigh layer grow fastest when t = 0.000 15A2R. Also displayed in figure 3 is 
the dependence on Reynolds number of (t,/R,)i (top curve); at this value of 
(tl/Rl)x > 0, cil vanishes; (tl/Rl)i decreases with increase in R, and at R, = 2000 
has a value 0.125. This implies that waves of wavelength h stop growing on a Rayleigh 
layer in a high-Reynolds-number flow when t = 0.002h”R. Although equations (5.1 1) 
are valid for small times, these values provide useful estimates for the maximum growth 
rate and the cutoff wavelength. 

Figure 2 shows that for (fl/RI)i > (t,/R,)f, ci, vanishes again when (t,/R,)i = 0.24 
and cil > 0 for (t,/R); greater than this value. This can be inferred from (5.1 I a), where 
the right-hand side vanishes at this value of (tl/R,)i, and is a spurious consequence of 
the truncation in the expansion in 6 made in deriving the governing equation of motion 
of the layer; a similar situation arises for large values of kd, in case (i) above. The effect 
corresponds to that found by Moore (197%) in the uniform-vorticity case when 
equations corresponding to (5.9) for that case were used to study the growth of long 
waves on a straight uniform vortex layer. As Moore points out, the appearance of this 
spurious effect means that any attempt to numerically integrate the modified integro- 
differential equation (4.8) will be faced with a difficulty, for even though the value of 
(t l /Rl)i  = ik8, at which the spurious growth appears is quite outside the range of 
validity of (4.12) (or (4.6)), short-wave disturbances, which will be excited in any 
numerical calculation, will be amplified. Thus special measures need to be taken in a 
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FIGURE 3. Dependence of ( t J K l ) i a z  and ( t , /R,)f  on R,. 

numerical scheme to ensure that very short waves are not amplified. A possible remedy 
to the situation is to obtain a correction of higher order than O(e) to the governing 
equation. The matter is pursued in Dhanak (1994) where a higher-order extension to 
Moore's equation for a thin layer of uniform vorticity is obtained ; it is shown that 
while an expansion to O(d) suppresses growth of short waves over an extended range 
of wavelengths, very short waves are still amplified and the use of a Pad@ approximation 
is suggested. Equations (5.11), however, should give a fairly good description of the 
growth of long waves on a Rayleigh layer for (t,/R$ 5 (fl /Rl)~az.  

6. Conclusions 
An extension to Birkhoff's (1962) equation for the motion of a vortex sheet has been 

obtained to allow for a non-uniform known distribution of vorticity in a thin layer, 
instead of a sheet of zero thickness; the equation is valid so long as the thickness of the 
layer is uniformly small compared with the local curvature. If the flow is taken to be 
inviscid and the vorticity in the layer to be uniform, the equation reduces to that of 
Moore (1978); in general, the vorticity satisfies a boundary-layer equation. The 
extension is used to derive an equation of motion of a diffusing vortex sheet in a viscous 
fluid. The equation is used to study the growth of long waves on a Rayleigh layer. This 
study reveals a difficulty in the path of numerical integration of the modified integro- 
differential equation, for although the equation is strictly valid for consideration of 
long-wave evolution of the sheet, short waves are bound to arise in any numerical 
calculation, and it is found that while the growth of a certain range of short-wave 
disturbances on an evolving vortex layer would be suppressed by allowing for viscous 
diffusion, very short waves would still be spuriously amplified. The difficulty is akin to 
that found by Moore in the case of a layer of uniform vorticity. Thus, making an 
approximate allowance for viscous diffusion of vorticity will not prevent the 
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appearance of short-wave chaotic behaviour on a vortex sheet. Nevertheless, by 
making use of special smoothing techniques (see Moore 1981) to suppress spurious 
growth of short-wave disturbances, the equation of motion derived here can be used 
to numerically follow the long-wave evolution of a diffusing vortex sheet. 

The paper is based on work carried out by the author at Imperial College, London 
with the encouragement of Professor D. W. Moore, FRS. It is a pleasure to thank 
Professor Moore for suggesting the problem and for his advice during the course of the 
work reported here. 

Appendix. Growth of long waves on a straight non-uniform vortex layer 
in an inviscid layer 

Here we consider the instability of an initially straight and steady vortex layer in a 
non-viscous fluid to disturbances of wavenumber k,  where k jk ,  < 1 (with k, as defined 
below), using the equations given in $ 3 .  The results for the growth rate are compared 
with those of Drazin & Howard (1962). 

The vorticity distribution in the unperturbed layer is - taken to be w,(y), where (x,y) 
denotes the position in a Cartesian coordinate system O X Y  with the centroid line C 
along GO at least 
as fast as exp ( - k ,  Iyl). Suppose that the streamwise velocities at y = co are T i V .  
Then the perturbed centroid line can be written, 

for t < 0. In view of ( 3 .  l), it is assumed that oo(y )  --f 0 as y +  

9 = ~ v - 1  +Ar, t) ,  (A 1) 
where Iaf/arl 4 V-’. The integrated vorticity function d̂  is taken to be 

d,(y) = o,,(y’)dy’ and Jd’l < Idol, uniformly in y.  
--co 

Substituting (A 1) and (A 2) into (3.15) with v = 0 and using the vorticity equation, 
gives, on linearizing, 

A,( V-  A,) dy - iM’, 

a v 2 a  
(at 2 ar) (Z) = V(yw,-d,) ---- Re - , 

at 

(A 4) 
where 4 is given by (5.3) and M’ = 2 j?m ( V - d o )  ( a A ’ / a r )  dy. 

In order to consider modal disturbances, f and A’ are chosen to be 

f(r, t )  = &(a+ eikrlv +ap e-ikrjv ), A’(T, y ,  t )  = ent(d+(y) eikrIv + d-(y) ePikrjv), 
(A 5)  

where a, and d ,  have complete values, a, being constants. 
If (A 5)  is substituted in (A 3 )  and (A 4) and the principal value integral is evaluated 

by contour integration, terms proportional to eTikrlV can be equated to yield equations 
for a, and d,. It is found that d-(y) = dT(y) = P ( y )  is a solution. Introducing the 
notation, consistent with Drazin & Howard, 

w(y) = g-ik(+V--A,(y)); w , , ~  = W ( + G O )  = gfik+V (A 4) 
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and writing X ( k ,  y )  = (w, - w ) / ( w ,  - w2) and w‘ = dw/dy, we obtain 
m 

- [ p ( k , Y ) ( W - w J d Y  (aF-a:)+2k s, .X(k,Y)dT dY, 1 
(A 7) 

(TQ; = ; ( w , - w , ) ~ ~ - + k  

w d - w ’ [ I m d ( y l ) d y l + 2 r  X ( k , y ) d d y  = ~w,(w-wz-yw’)(a_+u~). (A 8) 
-a I 

The solution to the integral equation (A 8) is straightforward and on eliminating d 
between (A 7) and (A 8) we obtain a pair of linear, homogenous equations in a,, the 
solution to which exists provided the determinant of a certain 2 x 2 matrix is zeroTThis 
is so provided 

which is in agreement with Drazin & Howard (1962). 
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